miércoles, 19 de noviembre de 2008

mig mag




El punto común de los dos procedimientos es el empleo de un electrodo consumible continuo. Dicho electrodo, en forma de alambre, es a la vez el material a partir del cual se generará el cordón de soldadura, y llega hasta la zona de aplicación por el mismo camino que el gas o la alimentación. Dependiendo de cada caso, el ajuste de la velocidad del hilo conllevará un mayor o menor flujo de fundente en la zona a soldar.
En general, en este proceso se trabaja con corriente continua (electrodo positivo, base negativa), y en raras ocasiones con corriente alterna. Las intensidades de corriente fluctúan entre 20 y 500 amperios con corriente continua y polaridad directa, 5 y 60 con polaridad inversa, y 40 y 300 amperios con corriente alterna.
El uso de los métodos de soldadura MIG y MAG es cada vez más frecuente en el sector industrial. En la actualidad, es uno de los métodos más utilizados en Europa occidental, Estados Unidos y Japón en soldaduras de fábrica. Ello se debe, entre otras cosas, a su elevada productividad y a la facilidad de automatización, lo que le ha valido abrirse un hueco en la industria automovilística. La flexibilidad es la característica más sobresaliente del método MIG / MAG, ya que permite soldar aceros de baja aleación, aceros inoxidables, aluminio y cobre, en espesores a partir de los 0,5 mm y en todas las posiciones. La protección por gas garantiza un cordón de soldadura continuo y uniforme, además de libre de impurezas y escorias. Además, la soldadura MIG / MAG es un método limpio y compatible con todas las medidas de protección para el medio ambiente.
En contra, su mayor problema es la necesidad de aporte tanto de gas como de electrodo, lo que multiplica las posibilidades de fallo del aparato, además del lógico encarecimiento del proceso.

jueves, 13 de noviembre de 2008

EQUIPO


Para este tipo de operación se recomienda una fuente de potencia de cc de voltaje constante diseñada para un ciclo de trabajo del
100%. El tamaño de la fuente de potencia está determinado por la corriente que requiere el trabajo por realizar. Como pueden ser necesarios electrodos grandes, tasas de alimentación de electrodo elevadas y tiempos de soldadura prolongados, los alimentadores de electrodo por fuerzas tienen motores impulsores de mayor capacidad y componentes para trabajo más pesado que en equipo similar para operación semiautomática.
Las boquillas pueden diseñarse de modo que formen un escudo lateral o concéntrico alrededor del electrodo. El escudo lateral permite soldar en surcos angostos y profundos y minimiza la acumulación de salpicaduras en la boquilla. Las unidades de boquilla pueden enfriarse con aire o con agua. En general, se prefieren las boquillas enfriadas por aire para soldar con corrientes de hasta 600 A. Si la corriente va a ser mayor, se recomienda usar una boquilla enfriada por agua. Es posible usar pistolas soldadoras en tándem con el fin de lograr tasas de deposición más altas con electrodos protegidos por gas.
En trabajos de recubrimiento a gran escala se puede aumentar la productividad empleando equipo automático oscilante con múltiples electrodos. Estas instalaciones pueden incluir un manipulador montado sobre rieles que sostiene una cabeza soldadora oscilante de múltiples electrodos con alimentadores de electrodo individuales y un rodillo giratorio motorizado también montado en rieles, además de fuente de potencia, controles electrónicos y sistema de suministro de electrodo.

LAS PISTORAS




Las pistolas soldadoras pueden enfriarse con aire o con agua Se prefieren las pistolas enfriadas por aire porque no hay necesidad de un suministro de agua, pero las enfriadas por agua son más compactas y ligeras, y requieren menos mantenimiento que las enfriadas por aire. Además, suelen tener especificaciones de corriente más altas, que pueden Llegar a 600 A con ciclo de trabajo continuo. Las pistolas pueden tener boquillas rectas o curvas. El ángulo de la boquilla curva puede variar de 400 a
En algunas aplicaciones, la boquilla curva ofrece mayor flexibilidad y facilidad de manipulación del electrodo.
Algunos electrodos autoprotegidos con núcleo de fundente requieren una extensión de electrodo mínima específica para proveer una protección adecuada. Las pistolas que usan estos electrodos generalmente cuentan con tubos guía provistos de una extensión aislada que sustenta el electrodo y asegura que se extenderá al menos una distancia mínima. Los detalles de una boquilla de electrodo autoprotegido, incluido el tubo gula aislado, se ilustra en seguida.

FCAW


Las aplicaciones de las dos variantes del proceso FCAW se traslapan, pero las características específicas de cada una las hacen apropiadas para diferentes condiciones de operación. El proceso se emplea para soldar aceros al carbono y de baja aleación, aceros inoxidables y hierros colados. También sirve para soldar por puntos uniones traslapadas en láminas y placas, así como para revestimiento y deposición de superficies duras.
El tipo de FCAW que se use dependerá del tipo de electrodos de que se disponga, los requisitos de propiedades mecánicas de las uniones soldadas y los diseños y embotamiento de las uniones. En general, el método auto protegido puede usarse en aplicaciones que normalmente se unen mediante soldadura por arco de metal protegido. El método con escudo de gas puede servir para algunas aplicaciones que se unen con el proceso de soldadura por arco de metal y gas. Es preciso comparar las ventajas y desventajas del proceso FCAW con las de esos otros procesos cuando se evalúa para una aplicación específica.
En muchas aplicaciones, el principal atractivo de la soldadura por arco con núcleo de fundente, en comparación con la de arco de metal protegido, es la mayor productividad. Esto generalmente se traduce en costos globales más bajos por kilogramo de metal depositado en uniones que permiten la soldadura continua y están fácilmente accesibles para la pistola y el equipo de fabricación en general, recubrimiento, unión de metales FCAW. Las ventajas consisten en tasas de deposición elevadas, disímiles, mantenimiento y reparación.
Factores de operación altos y mayores eficiencias de deposición Las desventajas más importantes, en comparación con el (no se desechan "colillas" de electrodo). Proceso SMAW, son el mayor costo del equipo, la relativa
La FCAW tiene amplia aplicación en trabajos de fabricación en taller, mantenimiento y construcción en el campo. Se ha usado para soldar ensambles que se ajustan al código de calderas y recipientes de presión de la ASME, a las reglas del American Bureau of Shipping y a ANSI/AWS D1.1, Código de soldadura estructural –acero La FCAW tiene categoría de proceso precalificado en ANSI/AWS D1. 1.
Se han usado electrodos de acero inoxidable con núcleo de fundente, autoprotegidos y con escudo de gas, para trabajos de fabricaron en general, recubrimiento, unión de metales disímiles, mantenimiento y reparación.
Las desventajas más importantes, en comparación con el proceso SMAW son el mayor costo del equipo, la relativa complejidad de la configuración y control de éste, y la restricción en cuanto a la distancia de operación respecto al alimentador del electrodo de alambre. El proceso puede generar grandes volúmenes de emisiones de soldadura que requieren equipo de escape apropiado, excepto en aplicaciones de campo. En comparación con el proceso GMAW, libre de escoria, la necesidad de eliminar la escoria entre una pasada y otra representa un costo de mano de obra adicional. Esta eliminación es necesaria sobre todo en las pasadas de raíz.
EQUIPO
EQUIPO SEMIAUTOMÁTICO
El equipo básico para la soldadura por arco con núcleo de fundente auto protegida y con escudo de gas es similar. La principal diferencia radica en el suministro y regulación del gas para el arco en la variante con escudo de gas. La fuente de potencia recomendada es la de cc de voltaje constante, similar a las que se usan para soldadura por arco de metal y gas. Esta fuente deberá ser capaz de trabajar en el nivel de corriente máximo requerido para la aplicación especifica. La mayor parte de las aplicaciones semiautomáticas usa menos de 500 A. El control de voltaje deberá poderse ajustar en incrementos de un voltio menos. También se usan fuentes de potencia de cc de corriente constante con la suficiente capacidad y controles y alimentadores de alambre apropiados, pero estas aplicaciones son poco comunes.
El propósito del control de alimentación del alambre es suministrar el electrodo continuo al arco de soldadura con una velocidad constante previamente establecida. La rapidez de alimentación del electrodo determina el amperaje de soldadura suministrado por una fuente de potencia de voltaje constante. Si se modifica esta rapidez, la máquina soldadora se ajustará automáticamente para mantener el voltaje de arco preestablecido. La velocidad de alimentación del electrodo se puede controlar por medios mecánicos o electrónicos.
Este proceso requiere rodillos impulsores que no aplanen ni distorsionen de alguna otra manera el electrodo tubular. Se emplean diversos rodillos con superficies ranuradas y moleteadas para adelantar el electrodo. Algunos alimentadores de alambre tienen solo un par de rodillos impulsores, mientras que otros cuentan con dos pares en los que por lo menos uno de los rodillos de cada par está conectado a un motor Si todos los rodillos están motorizados, el alambre se podrá adelantar ejerciendo menos presión con los rodillos.
Las pistolas típicas para soldadura semiautomática. Están diseñadas de modo que se sostengan cómodamente, sean fáciles de manipular y duren largo tiempo. Las pistolas establecen un contacto interno con el electrodo a fin de conducir la corriente de soldadura. La corriente y la alimentación del electrodo se accionan con un interruptor montado en la pistola.

soldadura por arco con nucleo de fundente


Soldadura por arco con núcleo de fundente
El proceso se está mejorando continuamente. Las fuentes de potencia y los alimentadores de alambre Se han simplificado mucho y son más confiables que sus predecesores. Las nuevas pistolas son ligeras y resistentes. Los electrodos se mejoran día con día. Entre los avances más recientes están los electrodo de aleación y de diámetro pequeño [hasta 0.9 mm (0.035 pulg)].
CARACTERÍSTICAS PRINCIPALES
Los beneficios de FCAW se obtienen al combinarse tres características generales:
(1) La productividad de La soldadura de alambre continuo.
(2) Las cualidades metalúrgicas que pueden derivarse de un fundente.
(3) Una escoria que sustenta y moldea La franja de soldadura.
El proceso FCAW combina características de la soldadura por arco de metal protegido (SMAW), la soldadura por arco de metal y gas (GMAW) y la soldadura por arco sumergido (SAW).
En el método con escudo de gas, el gas protector (por lo regular dióxido de carbono o una mezcla de argón y dióxido de carbono) protege el metal fundido del oxigeno y el nitrógeno del aire al formar una envoltura alrededor del arco y sobre el charco de soldadura. Casi nunca es necesario desnitrificar el metal de soldadura porque el nitrógeno del aire queda prácticamente excluido. Es posible, empero, que se genere cierta cantidad de oxigeno por la disociación de CO2 para formar monóxido de carbono y oxigeno. Las composiciones de los electrodos incluyen desoxidantes que se combinan con cantidades pequeñas de oxigeno en el escudo de gas
En el método con autoprotección se obtiene a partir de ingredientes vaporizados del fundente que desplazan el aire y por la escoria que cubre las gotas de metal derretido y el charco de soldadura durante la operación. La producción de CO2 y la introducción de agentes desoxidantes y desnitrurantes que proceden de ingredientes del fundente justo en la superficie del charco de soldadura explican por qué los electrodos con autoprotección pueden tolerar corrientes de aire más fuertes que los electrodos con escudo de gas. Es por esto que la FCAW con autoprotección es et método preferido para trabajo en el campo como el que se muestra en la figura 5.3.
Una característica de ciertos electrodos con autoprotección es el empleo de extensiones de electrodo largas. La extensión del electrodo es el tramo de electrodo no fundido que se extiende más allá del extremo del tubo de contacto durante la soldadura.
En general se usan extensiones de 19 a 95 mm (0.5 a 3.75 pulg) con los electrodos autoprotegidos, dependiendo de la aplicación.
Al incrementarse la extensión del electrodo aumenta el Calentamiento por resistencia del electrodo. Esto precalienta el electrodo y reduce la caída de voltaje a través del arco. Al mismo tiempo, la corriente de soldadura baja, con la consecuente reducción de el calor disponible para fundir el metal base. La franja de soldadura que resulta es angosta y poco profunda, lo que hace al proceso ideal para soldar materiales de calibre delgado y para salvar huecos causados por un embotamiento deficiente. Si se mantiene la longitud (voltaje) del arco y la corriente de soldadura (subiendo el voltaje. en la fuente de potencia e incrementando la velocidad de alimentación del electrodo), el aumento en la extensión del electrodo elevará la tasa de deposición.
Con ciertos tipos de electrodos con núcleo de. Fundente y autoprotección, la polaridad recomendable es CCEN (corriente continua, electrodo negativo) (polaridad directa), ya que produce menor penetración en el metal base. Esto hace posible usar con éxito electrodos de diámetro pequeño [de 0.8 mm (0.030 pulg), 0.9 mm (0.035 pulg) y 1.2 mm (0.045 pulg)] para soldar materiales de calibre delgado. Se han desarrollado electrodos autoprotegidos específicamente para soldar los aceros recubiertos de cinc y aluminizados que se usan comúnmente en la actualidad para fabricar automóviles.
En contraste, el método con escudo de gas es apropiado para la producción de soldaduras angostas y penetrantes. Se usan extensiones de electrodo cortas y corrientes de soldadura elevadas con alambres de todos los diámetros. Las soldaduras de filete hechas por FCAW son más angostas y de garganta mas profunda que las producidas con SMAW. El principio de extensión del electrodo no puede aplicarse al método con escudo de gas porque una extensión grande afecta adversamente la protección.
.

imagen

mig mag


procedimiento de mig mag

Procedimiento MIG y MAG. La soldadura por arco con hilo electrodo fusible y protección gaseosa (procedimiento MIG y MAG) utiliza como material de aportación un hilo electrodo continúo y fusible, que se alimenta automáticamente, a través de la pistola de soldadura, a una velocidad continua pero regulable. El baño de fusión está completamente cubierto por un chorro de gas protector, que también se suministra a través de la pistola. El procedimiento puede ser totalmente automático o semiautomático. Cuando la instalación es totalmente automática, la alimentación del alambre, la corriente de soldadura, el caudal de gas y la velocidad de desplazamiento a lo largo de la unión, se regulan previamente a los valores adecuados, y luego, todo funciona de forma automática. En la soldadura semiautomática la alimentación del alambre, la corriente de soldadura y la circulación de gas, se regulan a los valores convenientes y funcionan automáticamente, pero la pistola hay que sostenerla y desplazarla manualmente. El soldador dirige la pistola a lo largo del cordón de soldadura, manteniendo la posición, longitud del arco y velocidad de avance adecuados. Ventajas y limitaciones de la soldadura MIG/MAG. A continuación se citan algunas de las ventajas más importantes de este procedimiento.
Puesto que no hay escoria y las proyecciones suelen ser escasas, se simplifican las operaciones de limpieza, lo que reduce notablemente el costo total de la operación de la soldadura. En algunos casos, la limpieza del cordón resulta más cara que la propia operación de soldeo, por lo que la reducción de tiempo de limpieza supone la sensible disminución de los costos.
Fácil especialización de la mano de obra. En general, un soldador especializado en otros procedimientos, puede adquirir fácilmente la técnica de la soldadura MIG/MAG en cuestión de horas. En resumidas cuentas todo lo que tiene que hacer el soldador se reduce a vigilar la posición de la pistola, mantener la velocidad de avance adecuada y comprobar la alimentación de alambre se verifica correctamente.
Gran velocidad de soldadura, especialmente si se compara con el soldeo por arco con electrodos revestidos. Puesto que la aportación se realiza mediante un hilo continúo, no es necesario interrumpir la soldadura para cambiar electrodo. Esto no solo supone una mejora en la productividad, sino también disminuye el riesgo de defectos. Hay que tener en cuenta las interrupciones, y los correspondientes empalmes, ya que son con frecuencia, origen de defectos tales como inclusiones de escoria, falta de fusión o fisuras en el cráter.
Se puede realizar el soldeo en cualquier posición.
La gran velocidad del procedimiento MIG/MAG también influye favorablemente en el aspecto metalúrgico de la soldadura. Al aumentar la velocidad de avance, disminuye la amplitud de la zona afectada de calor, hay menos tendencia de aumento del tamaño del grano, se aminoran las transformaciones de estructura en el metal base y se reducen considerablemente las deformaciones.
Las buenas características de penetración del procedimiento MIG/MAG permiten la preparación con bordes más cerrados, con el consiguiente ahorro de material de aportación, tiempo de soldadura y deformación. En las uniones mediante cordones en ángulo también permite reducir el espesor del cordón en relación con otros procedimientos de soldeo.
Equipo de soldeo. El equipo de soldeo para la soldadura MIG/MAG está constituido fundamentalmente por: · Cable de masa. · Agua o aire hacia la pistola. · Agua o aire desde la pistola. · Conexión del interruptor de la pistola. · Gas de protección hacia la pistola. · Conjunto de cables. · Gas de protección desde el cilindro o botella. · Conexión de control. · Cable de la pistola. Corriente de soldadura. El tipo de corriente tiene una gran influencia sobre los resultados de la soldadura. La corriente continua con polaridad inversa, es la que permite obtener mejores resultados. En este caso, la mayor parte del calor se concentra sobre el baño de fusión, lo que mejora la penetración de la soldadura. Además, la corriente continúa con polaridad inversa, ejerce una enérgica acción de limpieza sobre el baño de fusión, lo que tiene gran importancia en la soldadura de metales que den óxidos pesados y difíciles de reducir, como en el caso del aluminio y el magnesio. La soldadura MIG con polaridad directa resulta impracticable por diversas razones:
Da cordones muy anchos y de pequeña penetración;
Produce excesivas proyecciones, y no presenta la acción de limpieza que se menciona en la polaridad inversa.
La mayor parte de los inconvenientes de la soldadura de polaridad directa, se derivan de la forma en que se verifica el transporte del metal de aportación.
Mientras que en la polaridad inversa el transporte se realiza en forma de pequeñas gotas (transporte de pulverización o spray transfer). En polaridad directa, este transporte se verifica en forma globular y errática. En cuanto a la corriente alterna, no es recomendable por las grandes diferencias de todo tipo que se presentan en cada semiciclo. Los equipos por proceso MIG, son ventajosos para aplicaciones de soldadura de aluminio o para cualquier soldadura que requiera buena presentación y resistencia La soldadura MIG presenta ventajas con respecto a los sistemas de soldadura convencional gracias al sistema de enfriamiento y protección de arco ofrecido por distintos gases como Argón y CO2.

MIG (Metal Inert Gas) y MAG (Metal Active Gas), es este electrodo el alimento del cordón de soldadura. El arco eléctrico está protegido, como en el caso anterior, por un flujo continuo de gas que garantiza una unión limpia y en buenas condiciones.
En la soldadura MIG, como su nombre indica, el gas es inerte; no participa en modo alguno en la reacción de soldadura. Su función es proteger la zona crítica de la soldadura de oxidaciones e impurezas exteriores. Se emplean usualmente los mismos gases que en el caso de electrodo no consumible, argón, menos frecuentemente helio, y mezcla de ambos.
En la soldadura MAG, en cambio, el gas utilizado participa de forma activa en la soldadura. Su zona de influencia puede ser oxidante o reductora, ya se utilicen gases como el dióxido de carbono o el argón mezclado con oxigeno El problema de usar CO2 en la soldadura es que la unión resultante, debido al oxígeno liberado, resulta muy porosa. Además, sólo se puede usar para soldar acero, por lo que su uso queda restringido a las ocasiones en las que es necesario soldar grandes cantidades de material y en las que la porosidad resultante no es un problema a tener en cuenta.
El punto común de los dos procedimientos es el empleo de un electrodo consumible continuo. Dicho electrodo, en forma de alambre, es a la vez el material a partir del cual se generará el cordón de soldadura, y llega hasta la zona de aplicación por el mismo camino que el gas o la alimentación. Dependiendo de cada caso, el ajuste de la velocidad del hilo conllevará un mayor o menor flujo de fundente en la zona a soldar.
En general, en este proceso se trabaja con corriente continua (electrodo positivo, base negativa), y en raras ocasiones con corriente alterna. Las intensidades de corriente fluctúan entre 20 y 500 amperios con corriente continua y polaridad directa, 5 y 60 con polaridad inversa, y 40 y 300 amperios con corriente alterna.
El uso de los métodos de soldadura MIG y MAG es cada vez más frecuente en el sector industrial. En la actualidad, es uno de los métodos más utilizados en Europa occidental, Estados Unidos y Japón en soldaduras de fábrica. Ello se debe, entre otras cosas, a su elevada productividad y a la facilidad de automatización, lo que le ha valido abrirse un hueco en la industria automovilística. La flexibilidad es la característica más sobresaliente del método MIG / MAG, ya que permite soldar aceros de baja aleación, aceros inoxidables, aluminio y cobre, en espesores a partir de los 0,5 mm y en todas las posiciones. La protección por gas garantiza un cordón de soldadura continuo y uniforme, además de libre de impurezas y escorias. Además, la soldadura MIG / MAG es un método limpio y compatible con todas las medidas de protección para el medio ambiente.
En contra, su mayor problema es la necesidad de aporte tanto de gas como de electrodo, lo que multiplica las posibilidades de fallo del aparato, además del lógico encarecimiento del proceso.

domingo, 7 de septiembre de 2008

GTAW


SOLDADURA CON GAS Y ARCO DE TUNGSTENO (GTAW o TIG)
En el año 1900 se otorgó una patente relacionada con un electrodo rodeado por un gas inerte. Los experimentos con este tipo de soldadura continuaron durante las déca­das de 1920 y 1930. Sin embargo, hasta 1940 se dio gran atención al proceso ~GTAW. Hasta antes de comenzar la Segunda Guerra Mundial se había hecho pocos experimen­tos porque los gases inertes eran muy costosos. Pero, durante la guerra, la industria de la aviación necesitaba con urgencia un método más rápido y fácil para soldar aluminio y magnesio para acelerar la producción.
Debido a los beneficios logrados en la producción, se justificó el costo adicional del empleo de gas inerte en gran escala. Aunque la producción de este gas es ahora mucho más rápida y económica, todavía representa un gasto adicional pero justificable.
EL PROCESO DE GTAW o TIG
El proceso GTAW es por fusión, en el que se genera el calor al establecer un arco entre un electrodo de tungste­no no consumible y el metal base. En este proceso el electro­do no se funde y no se emplea como metal de aporte. En su lugar, se alimenta con una varilla o alambre a la zona de soldadura, como en la soldadura oxiacetilenica y fuerte.
Cualquier soldador con experiencia en la soldadura con oxiacetileno y la soldadura fuerte, puede utilizar con rapidez el proceso GTAW porque las técnicas utilizadas son similares. Sin embargo, el equipo es del mismo tipo que se utiliza en la soldadura con arco. En el GTAW un gas inerte protege el metal fundido. La ventaja de este proceso es que no se necesitan fundentes y, además, no hay escoria que limpiar en la zona de la soldarura.
Después de la Segunda Guerra Mundial aumentó la demanda de metales no ferrosos y se perfeccionaron mu­chos otros procesos de GTAW con diferentes nombres, co­mo TIG (tungsteno y gas inerte), "Heliarc" y arco de ar­gón. Se encontró que el GTAW tenía la desventaja de que antes de soldar se necesitaba precalentar los metales de más de 6 mm (1 /4 in) de espesor. Esto motivó la creación de otro proceso: el GMAW (soldadura con gas y arco de metal).
EQUIPO BÁSICO
El equipo básico para la soldadura GTAW es:
1. Una máquina para soldar con arco y sus cables.
2. Un suministro de gas inerte con mangueras, regula­dores, etc.
3. Un suministro de agua (para algunos tipos de sopletes).
4. Un soplete en el cual se conecta todo lo anterior y que sirve también como portaelectrodo y mango. Puede tener también un interruptor para controlar todos los sistemas conectados en el mango del soplete.

VENTAJAS Y DESVENTAJAS


La soldadura mediante arco de gas tungsteno (GTAW) suele denominarse soldadura TIG. Se trata de un proceso de soldadura de alta calidad utilizado habitualmente. La soldadura TIG se ha convertido en una elección habitual cuando se requiere una soldadura de precisión y de alta calidad.
En la soldadura TIG se forma un arco entre un electrodo de tungsteno inconsumible y el componente a soldar. Se aplica gas a través del soplete para proteger el electrodo y fundir el baño de fusión de la soldadura. Si se utiliza un alambre o varilla de metal o de aportación, se añade al baño de fusión de la soldadura.
Los gases protectores que suelen usarse son el argón, el argón con hidrógeno y el argón con helio. Suele añadirse helio para incrementar la entrada de calor (aumentando así la velocidad o la penetración de la soldadura). El hidrógeno genera soldaduras de aspecto más limpio y también incrementa la entrada de calor. Sin embargo, el hidrógeno puede provocar porosidad o fisuración por absorción de hidrógeno.
Como todos los procesos, tiene tanto ventajas como desventajas.
Ventajas:
Soldaduras de calidad superior
Las soldaduras pueden realizarse con o sin metal de relleno
Control preciso de las variables de soldadura (calor)
Bajo coste en comparación con procesos como la soldadura mediante haz de electrones o mediante láser
Desventajas:
Requiere una mayor destreza por parte del soldador que la soldadura MIG o la soldadura de unión
Índices de deposición más bajos
Nos especializamos en la soldadura TIG de precisión de aleaciones de níquel (incluidas las de Hastelloy, Inconel y Monel), acero inoxidable, aleaciones de aluminio y la mayoría de aceros tratables con calor. La soldadura mediante fusión de secciones delgadas a partir de los 0,1 mm y la soldadura de relleno de secciones gruesas nos permiten procesar una amplia variedad de aplicaciones de productos.
Muchos de nuestros operadores aplican los últimos estándares europeos.

GTAW


En cualquier tipo de proceso de soldadura la mejor soldadura, que se puede obtener, es aquella donde la soldadura y el metal base comparten las mismas propiedades químicas, metalúrgicas y físicas, para lograr esas condiciones la soldadura fundida debe estar protegida de la atmósfera durante la operación de la soldadura, de otra forma, el oxigeno y nitrógeno de la atmósfera se combinarían, literalmente, con el metal fundido resultando en una soldadura débil y con porosidad. En la soldadura TIG la zona de soldadura es resguardada de la atmósfera por un gas inerte que es alimentado a través de la antorcha, Argon y Helio pueden ser usados con éxito en este proceso, el Argon es principalmente utilizado por su gran versatilidad en la aplicación exitosa de una gran variedad de metales, además de su alto rendimiento permitiendo soldaduras con un bajo flujo para ejecutar al proceso. El Helio genera un arco mas caliente, permitiendo una elevación del voltaje en el arco del 50-60%. Este calor extra es útil especialmente cuando la soldadura es aplicada en secciones muy pesadas. La mezcla de estos dos gases es posible y se usa para aprovechar los beneficios de ambos, pero la selección del gas o mezcla de gases dependerá de los materiales a soldar. --> -->
Dado que la atmósfera esta aislada 100% del área de soldadura y un control muy fino y preciso de la aplicación de calor, las soldaduras TIG, son más fuertes, más dúctiles y más resistentes a la corrosión que las soldaduras hechas con el proceso ordinario de arco manual (electrodo cubierto). Además del hecho de que no se necesita ningún fundente, hace este tipo de soldaduras aplicable a una amplia gama de diferentes procedimientos de unión de metales.
Es imposible que ocurra una corrosión debido a restos de fundente atrapados en la soldadura y los procedimientos de limpieza en la post-soldadura son eliminados, el proceso entero se ejecuta sin salpicaduras o chispas, la soldadura de fusión puede ser ejecutada en casi todos los metales usados industrialmente, incluyendo las aleaciones de Aluminio, Acero Inoxidable, aleaciones de Magnesio, Níquel y las aleaciones con base de Níquel, Cobre, Cobre-Silicón, Cobre-Níquel, Plata, Bronce fosforico, las aleaciones de acero de --> -->
alto carbón y bajo carbón, Hierro Colado (cast iron) y otros. El proceso también es ampliamente conocido por su versatilidad para soldar materiales no similares y aplicar capas de endurecimiento de diferentes materiales al acero.
La fuente de poder para TIG puede ser AC o DC, sin embargo, algunas características sobresalientes obtenidas con cada tipo, hacen a cada tipo de corriente mejor adaptable para ciertas aplicaciones especificas.

PROCESO GTAW

Soldadura GTAW/TIG


La soldadura TIG, es un proceso en el que se utiliza un electrodo de tungsteno, no consumible. El electrodo, el arco y el área que rodea al baño de fusión, están protegidos de la atmósfera por un gas inerte. Si es necesario aportar material de relleno, debe de hacerse desde un lado del baño de fusión. La soldadura TIG, proporciona unas soldaduras excepcionalmente limpias y de gran calidad, debido a que no produce escoria. De este modo, se elimina la posibilidad de inclusiones en el metal depositado y no necesita limpieza final. La soldadura TIG puede ser utilizada para soldar casi todo tipo de metales y puede hacerse tanto de forma manual como automática. La soldadura TIG, se utiliza principalmente para soldar aluminio, y aceros inoxidables, donde lo más importante es una buena calidad de soldadura. Principalmente, es utilizada en unión de juntas de alta calidad en centrales nucleares, químicas, construcción aeronáutica e industrias de alimentación.

martes, 11 de marzo de 2008

QUE ES ENERGIA ELECTRICA

Es el flujo de electrones a través de un circuito cerrado. Cuando ocurre una pequeña ruptura o
apertura del circuito, los electrones que se mueven a gran velocidad, saltan a través del espacio
aéreo entre los dos terminales, produciendo una chispa eléctrica. Con la suficiente Presión o voltaje
para hacer fluir los electrones continuamente a través de esta apertura.
En Soldadura Eléctrica el arco se forma a través de un circuito eléctrico cerrado donde el electrodo
hace las veces de resistencia, derritiéndose junto con la zona a soldar del metal base.
Para conocer la naturaleza de la energía eléctrica debemos conocer primero la estructura interna de
los sólidos, líquidos y gaseosos. Pero esta vez nos interesaremos por los sólidos.
Cuando un liquido pasa de la forma liquida a Sólida, los átomos se acomodan de una manera
característica a esa sustancia. Para entender mejor el tema veamos el siguiente capitulo.
ATOMOS Y MOLÉCULAS
Los átomos son estructuras microscópicas y complejas. Son tan pequeñas que el microscopio más
potente sólo nos puede dar una ligera idea de ellos.
Un átomo es la parte más pequeña de una sustancia pura que mantiene las características y
propiedades de esa sustancia.
Dado que se conocen 104 elementos de sustancias puras se concluye que existen 104 clases
diferentes de átomos.
Todos los átomos tienen estructuras similares, pero difieren en tamaño y peso. Por ejemplo el átomo
de Hidrógeno ( H2 ) que es el más pequeño de todos los átomos es el más ligero. Mientras que el
átomo de Cobre ( Cu ) es más pesado que el de Hidrógeno y el de Oro ( Au ) más grande y pesado
que el de Cobre. Todos los átomos a excepción del Hidrógeno están formados por tres partículas
básicas a saber:
• PROTONES
• NEUTRONES
• ELECTRONES
LOS PROTONES Y NEUTRONES se encuentran ubicados en una pequeñísima parte de la
materia cuyo nombre es el NÚCLEO del átomo. Los Protones están cargados positivamente,
mientras que los Neutrones como su nombre lo indica son neutros

LA SOLDADURA Y LA ENERGIA

Antes de comenzar a definir los términos de un proceso de Soldadura Eléctrica debemos hacer un
breve repaso sobre el tema de la energía, sus cargas eléctricas y los tipos de corriente Eléctrica.
QUE ES ENERGÍA
Para entrar en materia debemos definir primero que es Energía, y para esto explicaremos de una
forma sencilla diciendo que energía es la capacidad de hacer trabajo, cómo al frotar un peine en
el cabello, este adquiere la propiedad de atraer cuerpos ligeros. Al interpretar ésta propiedad
decimos que el pine está Electrizado, que posee una carga Eléctrica o mejor que está cargado
eléctricamente. La energía no se crea ni se destruye simplemente es transformada de un objeto a
otro.
ORIGENES DE LA ENERGÍA
El origen y la naturaleza de la energía no se conocen aún, pero podemos decir que existe una intima
relación entre energía y trabajo. Veamos un ejemplo de cómo se genera la energía Eléctrica en una
Central Hidroeléctrica: Primero que todo se represa gran cantidad de agua, se envía desde una
altura considerable en caída libre a una turbina que a su vez esta acciona en movimiento de giro un
alternador que está equipado y preparado para generar energía eléctrica. Esta energía es acumulada
en unas baterías para luego ser enviada en alta tensión ( AT ), a las subestaciones de centrales
eléctricas, en donde la corriente de alta tensión (AT) es transformada en corriente de baja tensión
(BT), a través de unos transformadores que regulan la corriente alterna (AT) a: 440, 220 y 110
voltios.
Existen varias clases de energía y todas se transforman entre si las mas conocidas en nuestro medio
s on:
1. ENERGÍA MUSCULAR
2. ENERGÍA POTENCIAL
3. ENERGIA CINETICA
4. ENERGÍA SOLAR
5. ENERGÍA NUCLEAR
6. ENERGÍA SONORA
7. ENRGIA LUMINOSA
TRANSFORMACIÓN DE LA ENERGÍA
La energía

lunes, 10 de marzo de 2008

proceso de soldadura smaw


Este es un proceso de soldadura por arco eléctrico con electrodo manual revestido, en donde
intervienen un arco eléctrico que se genera a través de un circuito eléctrico producido por medio
de una fuente de poder llámese TRANSFORMADOR DE CORRIENTE AC, RECTIFICADOR o
GENERADOR de corriente Alterna o Continua, cables porta electrodo y masa, Porta Electrodo,
electrodo y piezas a unir.
El proceso de soldadura por arco eléctrico con electrodo manual revestido se emplea para unir dos
o más metales Ferrosos y no ferrosos. ( Ver Maquinas de soldar )
En este proceso intervienen dos tipos de polaridad y esta se elige de acuerdo al tipo de Electrodo
que se valla a utilizar. Hay Electrodos que trabajan con polaridad invertida, como los hay los que
trabajan con polaridad directa

lunes, 3 de marzo de 2008

QUE ES SOLDADURA

La soldadura es un proceso de fabricación en donde se realiza la unión de dos materiales, (generalmente metales o termoplásticos), usualmente logrado a través de la coalescencia (fusión), en la cual las piezas son soldadas derritiendo ambas y agregando un material de relleno derretido

viernes, 29 de febrero de 2008

hestoria de la soldadura

HISTORIA DE LA SOLDADURA
HISTORIA DE LA SOLDADURA En el año 1.904 tiene lugar en Suecia un hecho de trascendencia para el desarrollo de la soldadura. Oscar Kjellberg descubre el electrodo recubierto y aunque la era industrial de la unión soldada por arco eléctrico empieza en Europa a comienzos dela década de los 50, ya se realizaron uniones de este tipo a principios de nutro siglo.1. Principios del proceso.En este proceso de soldadura, también llamado Manual Metal Arc (MMA), se caracteriza porque se produce un arco eléctrico entre la pieza a soldar y un electrodo metálico recubierto.Con el calor producido por el arco, se funde el extremo del electrodo y se quema el revestimiento, produciéndose la atmósfera adecuada para que se produzca la transferencia de las gotas del metal fundido desde el alma del electrodo hasta el baño de fusión en el material de base.En el arco las gotas del metal fundido se proyectan recubiertas de escoria fundida procedente del recubrimiento que por efecto de la tensión superficial y de la viscosidad flota en la superficie, solidificando y formando una capa de escoria protectora del baño fundido.