Procedimiento MIG y MAG. La soldadura por arco con hilo electrodo fusible y protección gaseosa (procedimiento MIG y MAG) utiliza como material de aportación un hilo electrodo continúo y fusible, que se alimenta automáticamente, a través de la pistola de soldadura, a una velocidad continua pero regulable. El baño de fusión está completamente cubierto por un chorro de gas protector, que también se suministra a través de la pistola. El procedimiento puede ser totalmente automático o semiautomático. Cuando la instalación es totalmente automática, la alimentación del alambre, la corriente de soldadura, el caudal de gas y la velocidad de desplazamiento a lo largo de la unión, se regulan previamente a los valores adecuados, y luego, todo funciona de forma automática. En la soldadura semiautomática la alimentación del alambre, la corriente de soldadura y la circulación de gas, se regulan a los valores convenientes y funcionan automáticamente, pero la pistola hay que sostenerla y desplazarla manualmente. El soldador dirige la pistola a lo largo del cordón de soldadura, manteniendo la posición, longitud del arco y velocidad de avance adecuados. Ventajas y limitaciones de la soldadura MIG/MAG. A continuación se citan algunas de las ventajas más importantes de este procedimiento.
Puesto que no hay escoria y las proyecciones suelen ser escasas, se simplifican las operaciones de limpieza, lo que reduce notablemente el costo total de la operación de la soldadura. En algunos casos, la limpieza del cordón resulta más cara que la propia operación de soldeo, por lo que la reducción de tiempo de limpieza supone la sensible disminución de los costos.
Fácil especialización de la mano de obra. En general, un soldador especializado en otros procedimientos, puede adquirir fácilmente la técnica de la soldadura MIG/MAG en cuestión de horas. En resumidas cuentas todo lo que tiene que hacer el soldador se reduce a vigilar la posición de la pistola, mantener la velocidad de avance adecuada y comprobar la alimentación de alambre se verifica correctamente.
Gran velocidad de soldadura, especialmente si se compara con el soldeo por arco con electrodos revestidos. Puesto que la aportación se realiza mediante un hilo continúo, no es necesario interrumpir la soldadura para cambiar electrodo. Esto no solo supone una mejora en la productividad, sino también disminuye el riesgo de defectos. Hay que tener en cuenta las interrupciones, y los correspondientes empalmes, ya que son con frecuencia, origen de defectos tales como inclusiones de escoria, falta de fusión o fisuras en el cráter.
Se puede realizar el soldeo en cualquier posición.
La gran velocidad del procedimiento MIG/MAG también influye favorablemente en el aspecto metalúrgico de la soldadura. Al aumentar la velocidad de avance, disminuye la amplitud de la zona afectada de calor, hay menos tendencia de aumento del tamaño del grano, se aminoran las transformaciones de estructura en el metal base y se reducen considerablemente las deformaciones.
Las buenas características de penetración del procedimiento MIG/MAG permiten la preparación con bordes más cerrados, con el consiguiente ahorro de material de aportación, tiempo de soldadura y deformación. En las uniones mediante cordones en ángulo también permite reducir el espesor del cordón en relación con otros procedimientos de soldeo.
Equipo de soldeo. El equipo de soldeo para la soldadura MIG/MAG está constituido fundamentalmente por: · Cable de masa. · Agua o aire hacia la pistola. · Agua o aire desde la pistola. · Conexión del interruptor de la pistola. · Gas de protección hacia la pistola. · Conjunto de cables. · Gas de protección desde el cilindro o botella. · Conexión de control. · Cable de la pistola. Corriente de soldadura. El tipo de corriente tiene una gran influencia sobre los resultados de la soldadura. La corriente continua con polaridad inversa, es la que permite obtener mejores resultados. En este caso, la mayor parte del calor se concentra sobre el baño de fusión, lo que mejora la penetración de la soldadura. Además, la corriente continúa con polaridad inversa, ejerce una enérgica acción de limpieza sobre el baño de fusión, lo que tiene gran importancia en la soldadura de metales que den óxidos pesados y difíciles de reducir, como en el caso del aluminio y el magnesio. La soldadura MIG con polaridad directa resulta impracticable por diversas razones:
Da cordones muy anchos y de pequeña penetración;
Produce excesivas proyecciones, y no presenta la acción de limpieza que se menciona en la polaridad inversa.
La mayor parte de los inconvenientes de la soldadura de polaridad directa, se derivan de la forma en que se verifica el transporte del metal de aportación.
Mientras que en la polaridad inversa el transporte se realiza en forma de pequeñas gotas (transporte de pulverización o spray transfer). En polaridad directa, este transporte se verifica en forma globular y errática. En cuanto a la corriente alterna, no es recomendable por las grandes diferencias de todo tipo que se presentan en cada semiciclo. Los equipos por proceso MIG, son ventajosos para aplicaciones de soldadura de aluminio o para cualquier soldadura que requiera buena presentación y resistencia La soldadura MIG presenta ventajas con respecto a los sistemas de soldadura convencional gracias al sistema de enfriamiento y protección de arco ofrecido por distintos gases como Argón y CO2.
MIG (Metal Inert Gas) y MAG (Metal Active Gas), es este electrodo el alimento del cordón de soldadura. El arco eléctrico está protegido, como en el caso anterior, por un flujo continuo de gas que garantiza una unión limpia y en buenas condiciones.
En la soldadura MIG, como su nombre indica, el gas es inerte; no participa en modo alguno en la reacción de soldadura. Su función es proteger la zona crítica de la soldadura de oxidaciones e impurezas exteriores. Se emplean usualmente los mismos gases que en el caso de electrodo no consumible, argón, menos frecuentemente helio, y mezcla de ambos.
En la soldadura MAG, en cambio, el gas utilizado participa de forma activa en la soldadura. Su zona de influencia puede ser oxidante o reductora, ya se utilicen gases como el dióxido de carbono o el argón mezclado con oxigeno El problema de usar CO2 en la soldadura es que la unión resultante, debido al oxígeno liberado, resulta muy porosa. Además, sólo se puede usar para soldar acero, por lo que su uso queda restringido a las ocasiones en las que es necesario soldar grandes cantidades de material y en las que la porosidad resultante no es un problema a tener en cuenta.
El punto común de los dos procedimientos es el empleo de un electrodo consumible continuo. Dicho electrodo, en forma de alambre, es a la vez el material a partir del cual se generará el cordón de soldadura, y llega hasta la zona de aplicación por el mismo camino que el gas o la alimentación. Dependiendo de cada caso, el ajuste de la velocidad del hilo conllevará un mayor o menor flujo de fundente en la zona a soldar.
En general, en este proceso se trabaja con corriente continua (electrodo positivo, base negativa), y en raras ocasiones con corriente alterna. Las intensidades de corriente fluctúan entre 20 y 500 amperios con corriente continua y polaridad directa, 5 y 60 con polaridad inversa, y 40 y 300 amperios con corriente alterna.
El uso de los métodos de soldadura MIG y MAG es cada vez más frecuente en el sector industrial. En la actualidad, es uno de los métodos más utilizados en Europa occidental, Estados Unidos y Japón en soldaduras de fábrica. Ello se debe, entre otras cosas, a su elevada productividad y a la facilidad de automatización, lo que le ha valido abrirse un hueco en la industria automovilística. La flexibilidad es la característica más sobresaliente del método MIG / MAG, ya que permite soldar aceros de baja aleación, aceros inoxidables, aluminio y cobre, en espesores a partir de los 0,5 mm y en todas las posiciones. La protección por gas garantiza un cordón de soldadura continuo y uniforme, además de libre de impurezas y escorias. Además, la soldadura MIG / MAG es un método limpio y compatible con todas las medidas de protección para el medio ambiente.
En contra, su mayor problema es la necesidad de aporte tanto de gas como de electrodo, lo que multiplica las posibilidades de fallo del aparato, además del lógico encarecimiento del proceso.